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Abstract Purpose Glioblastoma Multiforme (GBM) is

the most common and lethal primary brain tumor in adults.

The goal of this study was to test the predictive value of

MR parameters in relation to the survival of patients with

newly diagnosed GBM who were scanned prior to

receiving adjuvant radiation and chemotherapy. Methods

The study population comprised 68 patients who had sur-

gical resection and were to be treated with fractionated

external beam radiation therapy and chemotherapy. Imag-

ing scans included anatomical MRI, diffusion and

perfusion weighted imaging and 1H MRSI. The MR data

were acquired 3–5 weeks after surgery and approximately

1 week before treatment with radiation therapy. The dif-

fusion, perfusion and spectroscopic parameter values were

quantified and subjected to proportional hazards analysis

that was adjusted for age and scanner field strength. Results

The patients with larger lesion burden based upon volumes

of anatomic lesions, volume of CNI2 (number of voxels

within the T2 lesion having choline to NAA index [2),

volume of CBV3 (number of pixels within the T2 lesion

having relative cerebral blood volume [3), and volume of

nADC1.5 (number of pixels within the T2 lesion having

normalized apparent diffusion coefficient \1.5) had a

higher risk for poor outcome. High intensities of combined

measures of lactate and lipid in the T2 and CNI2 regions

were also associated with poor survival. Conclusions Our

study indicated that several pre-treatment anatomic, phys-

iological and metabolic MR parameters are predictive of

survival. This information may be important for stratifying

patients to specific treatment protocols and for planning

focal therapy.

Keywords Magnetic resonance imaging � Brain tumor �
Survival analysis

Introduction

Glioblastoma multiforme (GBM) is the most common and

lethal primary brain tumor in adults. It is nearly uniformly

fatal, with a median survival of approximately 1 year,

despite multimodality treatment approaches. There is

considerable heterogeneity in outcome between different

patients, with a wide range of survival times. Efforts to

understand why some patients live longer than others are

expected to provide insights into designing treatment

methodologies tailored to individual patients. More accu-

rate assessment of the baseline risk for each patient would

allow improved treatment selection and may be valuable

for stratifying participants in clinical trials into subgroups

with more uniform outcomes.
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There are several prognostic factors described in the

literature that have been proposed as influencing the

survival of patients with glioblastoma multiforme (GBM).

These include age, performance status, histological fac-

tors, lesion location, extent of surgical resection, adequate

radiation therapy, presence of epidermal growth factor,

microvessel density, presence of seizures and glucocorti-

cal dependency [4, 10, 12, 17, 18, 27, 35, 49, 57]. While

these are of interest for patient evaluation and are being

studied in ongoing large scale clinical trials, it would be

beneficial if there were more specific, non-invasive

parameters for assessing the likelihood of responding to

therapy and for evaluating treatment effects in individual

patients.

Perfusion weighted MRI has been proposed as a can-

didate for predicting outcome in patients with glioma. The

data obtained with this technique can be used to calculate

relative cerebral blood volume (rCBV), which is associated

with tumor microvascularity and may be able to distinguish

residual and/or recurrent tumor from treatment induced

necrosis [7, 13, 16, 19, 26, 42]. A second technique of

interest is diffusion weighted MRI [3]. This reflects the

degree of tissue structure, water content, and intra- and

extra cellular space and has been proposed as a measure of

tumor cellularity [8, 9, 32, 41, 51]. A third technique is

proton MR spectroscopic imaging (1H MRSI), which

enables the quantitative assessment of the spatial distribu-

tion of tissue metabolites such as choline, creatine, N-

acetylaspartate (NAA), lactate, and lipid [39, 55].

The current study is based upon the hypothesis that

perfusion weighted MRI, diffusion weighted MRI and
1H MRSI are valuable for identifying the true spatial extent

and malignancy of tumor and that they are useful for pre-

dicting survival in patients with GBM. The objective was

to test the prognostic value of these techniques in relation

to the survival of patients with newly diagnosed GBM who

were scanned after surgical resection but prior to receiving

adjuvant radiation and chemotherapy.

Materials and methods

Patient population

The study population comprised 68 patients who had been

classified as having grade IV glioma (GBM) based upon

histological analysis of tissue samples according to the

world health organization (WHO II) criteria. These patients

had undergone surgical resection and were to be treated

with fractionated external beam radiation therapy (XRT)

and chemotherapy. All subjects gave their written informed

consent.

MRI examination

MR data were acquired using either 1.5T or 3T MR

scanners (GE Healthcare, Milwaukee, WI) using com-

mercially available head coils. Thirty-five of them were

scanned with a 1.5T scanner and 33 were scanned with a

3T scanner. All 68 patients had anatomical MRI; 61

patients had perfusion weighted imaging, 65 patients had

diffusion weighted imaging and 67 patients had 1H MRSI.

The median time between surgery and the pre-radiation

scan was 27 days.

Anatomical MRI

The MRI protocol consisted of T1-weighted (TR/TE = 400/

12 ms) sagittal scout images; axial (FLAIR) fluid attenuated

inversion recovery images (TR/TE/T1 = 1000/143/

2200 ms, 220 9 220 9 160 mm3 field of view (FOV) with

256 9 256 9 32 matrix); and pre- and post contrast

T1-weighted (SPGR) spoiled gradient echo images (TR/

TE = 32/8, 40 flip angle, 180 9 240 9 186 mm3 FOV with

192 9 256 9 124 matrix). The FLAIR and pre gadolinium

SPGR images were aligned to the post gadolinium SPGR

images using software developed in our laboratory [37].

Figure 1 shows examples of FLAIR and T1 weighted post

Gadolinium images.

Perfusion weighted imaging

A bolus of 0.1 mmol/kg of body weight gadolinium diethyl

enetriamine-pentacid (Gd-DTPA) was injected rapidly into

the antecubital vein using an automatic injector (Medrad,

Pittsburgh, PA) at a rate of about 5 ml/s. Dynamic sus-

ceptibility contrast EPI-gradient echo images were

acquired before, during and after the bolus injection.

Perfusion weighted imaging parameters were TR/TE of

1500/54 ms, 35� flip angle, 26 9 26 cm2 FOV, 128 9 128

acquisition matrix, 4 mm slice thickness and a total of 80

time points. Perfusion datasets were processed to yield

relative cerebral blood volume (rCBV), percent DR2*

recovery, and DR2* peak height maps using in-house

software [30]. Perfusion derived maps were resampled to

the same resolution as the SPGR images and rigidly

aligned to the SPGR using the VTK software package.

Figure 2 shows an example of rCBV and DR2* peak height

maps for one of the patients in the study.

Diffusion weighting imaging

An echo planar imaging (EPI) spin echo (SE) diffusion

weighted pulse sequence was used to acquire images that

covered supratentorial brain. DWI parameters were
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TR/TE = 10000/100 ms, matrix 128 9 128 9 28, FOV =

360 9 360 mm3, 3 mm slice thickness, b value =

1000 s/mm2, gradient strength = 0.04 T/m, gradient dura-

tion = 21 ms and gradient separation = 27 ms. The

apparent diffusion coefficient (ADC) maps were calculated

based upon the MR signal intensity decay from diffusion

datasets using software developed in-house. Diffusion maps

were resampled to the same resolution as the SPGR images

and rigidly aligned to them using the VTK software package.

Figure 1c shows an example of a diffusion map for one of the

patients in the study.

1H MRSI

Three-dimensional 1H MRSI data (TR/TE = 1000/144 ms,

phase encoding matrix = 12 9 12 9 8 or 16 9 8 9 8)

with 1 cc nominal spatial resolution was acquired with

patient resolved spectroscopic (PRESS) volume localiza-

tion and very selective saturation (VSS) bands [53] for

outer voxel suppression. The post gadolinium T1 weighted

SPGR images were used to prescribe the PRESS selected

volume to cover both the lesion and 200–300 cc of adja-

cent normal appearing tissue. Areas of subcutaneous lipids

and regions with rapidly varying magnetic susceptibility

were avoided whenever possible. Of the patients who

received spectroscopy, 35 received lactate-edited spec-

troscopy as described previously [48]. Figure 3 shows

examples of spectra that were obtained from one of the

patients using a 1.5T MR scanner with a lactate edited

pulse sequence.

The 1H MRSI processing algorithms were developed

in-house and have been applied to a large number of

patients [36, 38]. Briefly, the data were filtered with a

Lorentzian function and Fourier transformed, resulting in

an array of spectra. The spectra were corrected for

baseline variations, phase shifts and frequency shifts

within the region of each peak, employing a priori

information about the relative location of each metabolite

peak. An automatic search procedure was used to iden-

tify each resonance. The peak heights of choline,

creatine, NAA, lactate and lipid resonances were quan-

tified. In order that the patients who did not have lactate

edited 1H MRSI could be included in the analysis, an

index of combined contributions was defined to be the

absolute peak intensity of the combined peak for the

non-lactate edited case and the sum of lactate and lipid

values where they were available. The choline to NAA

index (CNI) was calculated using an automated tech-

nique described by [33]. Metabolic maps were resampled

with sinc interpolation to the same resolution as the

SPGR images. The spectroscopic data was assumed to be

in alignment with the post-gadolinium SPGR images

since the 1H MRSI examination was acquired shortly

afterward.

Fig. 1 Example of a FLAIR

image (a), a T1 weighted post-

contrast image (b), and an

apparent diffusion coefficient

map (c) from corresponding

slices in a 68 year old patient

with a newly diagnosed GBM

post surgery and prior to

radiation therapy

Fig. 2 Example of a post-

contrast T weighted image (a)

and overlaid perfusion maps

showing (b) rCBV and (c) DR2*

peak height maps for a patient

with a 46 year old patient with

GBM
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Post processing of anatomic images

The contrast enhancing lesion (CEL) and necrotic (NEC)

regions were contoured on the post Gd SPGR images. The

T2 hyperintense region (T2ALL) was contoured on the

FLAIR images and was chosen to exclude the resection

cavity. The non-enhancing lesion (NEL) was defined as the

T2ALL minus the CEL and NEC regions. There was no

attempt to distinguish between edema and residual tumor.

All tumor region-of-interest segmentation was performed

using in-house semi-automated segmentation software

[46]. Normal appearing white matter (NAWM) regions

were automatically segmented using the FSL segmentation

software package (http://www.fmrib.ox.ac.uk/fsl/fast/

index.html).

Analysis

The perfusion and diffusion parameter values were ana-

lyzed within each of the segmented anatomical regions

(NAWM, CEL, T2ALL, NEL and NEC), limiting the

region of analysis for the perfusion data to the region

covered by the data acquisition. The diffusion-weighted

images covered the entire brain permitting an unrestricted

analysis. The metabolite values within the CEL were

measured by its intersection with the PRESS excitation

volume. To analyze the metabolite values, masks of the

anatomic regions of interest were re-sampled to match the

resolution of the spectral data. Voxels that were predomi-

nantly in NAWM, the CEL, the NEC or the NEL, as well

voxels that had metabolite values greater than specific

thresholds were used to calculate the statistics for the

analysis.

Survival was determined from the date of the MR

examination prior to radiation therapy. For circumstances

where the patient was still alive (18 out of 68), the survival

was censored with the date of the last physician visit.

Kaplan–Meier survival curves were computed using stan-

dard techniques as described previously [20]. Figure 4a

shows the Kaplan–Meier survival curve for the total pop-

ulation. The Cox proportional hazards model was used to

evaluate the influence of each of the parameters on

Choline

Creatine

NAA

Choline

Creatine

Lipid

Lactate

(b)

(a)

(c)

(d) (e)

Fig. 3 Spectra and images from the same patient as in Fig. 2. The

individual spectra from normal brain (a) shows peaks corresponding

to NAA, choline and creatine, from the summed spectra in the tumor

(b) with an additional peak from lipid, and from the difference spectra

in the tumor (c) showing the lactate peak. The T1-weighted post-

contrast (d) and FLAIR (e) images display the PRESS selected

volume and the corresponding arrays of summed (left) and difference

(right) of the lactate-edited spectra. Voxels in the spectral arrays that

are highlighted in blue have CNI [2 but no lipid, voxels in red have

both CNI [2 and lipid with SNR [6.0 and voxels in green have

lactate with SNR [6.0
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survival. The Cox model is a semi-parametric survival

analysis tool that assumes a fixed baseline hazard for the

population and computes regression coefficients for a set of

predictor variables. The Cox regression analysis for each

MR modality was adjusted for age because this has been

shown to play a role as a prognostic factor in previous

studies [5, 24] and for scanner field strength.

Results

Patient age ranged from 27 to 78, with a median of

53 years. Age was not significantly correlated with survival

in this study (P = 0.23). The median overall survival time

was 540 days (18 months) with 18 patients censored. From

the analysis of the clinical, immediate post-operative scans,

25 of the patients were assessed as having received a Gross

Total Resection (GTR), 34 as having a Sub-total Resection

(STR) and nine as having received a biopsy only (Bx). For

the sub group who received a GTR the median survival was

649 days (22 months) and for the sub-group who received

a STR or Bx the survival was 486 days (16 months).

Comparison of the Kaplan–Meier curves for these groups

based upon the log rank test gave a P-value of 0.115 and

with the Wilcoxon test gave a P-value of 0.060. Propor-

tional hazards analysis that was adjusted for age had a

P-value of 0.086.

Anatomic volumes

Fifty-five patients had Gadolinium enhancing lesions and 17

patients had regions of necrosis that could be identified on the

T1-weighted images. The median volume of the CEL

patients was 2.7 cc with a range of 0.2–44.6 cc (n = 55) and

the median volume of the NEC was 3.06 with a range of 0.1–

20.6 cc (n = 17). All 68 patients had regions of T2 hyper-

intensity, with the median volume of the T2ALL being

24.4 cc with a range of 0.2–106.4 cc and the median volume

of the NEL being18.8 cc with a range of 0.2–79.9 cc. There

were no significant differences between lesion volumes

based upon field strength. Increasing volumes of the ana-

tomic lesions were associated with worse survival, with the

T2ALL volume having the lowest P-value (P = 0.0001),

followed by the NEL (P = 0.003), the sum of the

CEL ? NEC (P = 0.004) and the CEL alone (P = 0.016).

Of interest is that the significance for the T2ALL volume was

only marginally decreased when the proportional hazards

analysis was adjusted for the CEL or CEL ? NEC volumes

(P = 0.0005 and 0.0004, respectively). This may be due to

the fact that the volumes of the CEL and T2ALL were cor-

related (R = 0.61, P \ 0.0001). As seen in Table 1, there

was no relationship to survival for the percentages of the

T2ALL that were enhancing and/or necrotic. Figure 4b

shows Kaplan–Meier curves for populations with T2ALL

regions greater than or less than the median volume of

24.4 cc. The median survival for the population with larger

T2ALL lesions was 421 days (14 months) compared with

687 days (23 months) for the population with smaller

lesions. The difference between the curves is significant

based upon both the log rank (P = 0.009) and Wilcoxon

tests (P = 0.010).

Perfusion parameters

To facilitate comparison of parameter values between

patients, the CBV and DR2* peak height maps were nor-

malized to the median value within NAWM (see Table 2).

The DR2* recovery was expressed as a percentage of the

baseline (pre-bolus) value and so no further normalization

was attempted. The median CBV and DR2* peak heights

within the CEL (1.3 and 1.2) were significantly greater than

in NAWM, while the median values in the NEL were equal

or slightly reduced compared to NAWM (1.0 and 0.9). The

90th percentile of these parameters showed similar trends.

The median DR2* recovery was significantly lower in the

CEL (77%) than in other regions (83% in NAWM and 81%

in the NEL). For data acquired using the 3T scanner, the

median and 10th percentile of the DR2* recovery were
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Fig. 4 Kaplan–Meier survival

curves for (a) all patients and

(b) for groups of patients with

T2ALL lesion volume greater

than (gray line) or less than

(black line) the median value
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significantly lower in the CEL (73% and 56%) than with

the data from the 1.5T scanner (78% and 65%), presumably

due to the increased sensitivity to susceptibility effects at

the higher field strength.

Although there is no standard threshold for distin-

guishing regions with abnormal CBV, previous studies

have proposed that values greater than three times NAWM

(nCBV[3) are considered to be abnormal [30]. Despite the

fact that such regions were relatively small with a median

volume of 0.6 cc, it was observed that large nCBV vol-

umes were associated with worse survival (P = 0.039).

Figure 6a shows the normalized CBV histograms within

the critical regions of interest for one of the patients. Note

that there is considerable overlap in the values between

different regions and, although the distributions are dif-

ferent, there are elevated nCBV values in both the CEL and

NEL.

Diffusion parameters

The median ADC was increased in all anatomic regions

compared to NAWM but the values were similar in the

CEL than in the NEL (1.4 vs. 1.3, see Table 3). Figure 6b

shows an example of histograms for the normalized ADC

within the various regions and illustrates the large overlap

between them. The 10th percentiles of ADC showed sim-

ilar trends to the median values. Based upon the

proportional hazards analysis there was no association

between the intensities of ADC or nADC in different

regions and survival. As with the perfusion parameters,

there is no clear cut-off for ADC that distinguishes tumor

versus NAWM and edema. Our previous study had indi-

cated that patients with median nADC value within the

T2all less than 1.5 may have worse survival [40] and so we

used this threshold to define the volume of the T2ALL that

had low nADC. The median volume for the current patient

population was 12.9 cc and the P-value for the proportional

hazard analysis of these volumes was 0.002 (see Table 1).

The median and the 10th percentile of the ADC and nADC

values within the anatomic regions were not found to be

significantly associated with survival.

Metabolic parameters

The levels of choline, creatine and NAA are summarized in

Table 4. The median choline was lower in the CEL than

the NEL or NAWM (0.79 vs. 0.97 and 1.00). Median levels

of creatine and NAA were decreased in all lesion regions

Table 1 Median values of volumes for the CEL, CEL ? NEC, NEL and T2ALL, as well as the percentage of each volume in T2ALL for

patients where these regions could be identified

Parameter CEL (N = 50) CEL ? NEC (N = 50) NEL (N = 68) T2ALL (N = 68)

Total volume (cc) 2.7 ± 5.8 3.8 ± 11.6 14.1 ± 14.3 24.4 ± 15.0

P-value for total volume 0.016* 0.004* 0.003* 0.0001*

Volume within T2ALL (%) 20.1 ± 19.8 21.5 ± 21.2 82.7 ± 21.4 100

P-value for % volume 0.788 0.653 0.672 n/a

Volumes overlapping with T2ALL nCBV [3 (N = 61) nADC \1.5 (N = 65) snrLL [6 (N = 59) CNI [2 (N = 67)

Volume cc/voxels 0.6 ± 2.8 15.4 ± 15.8 17.1 ± 4.9 15.9 ± 4.9

P-value 0.039* 0.006* 0.009* 0.005*

The P-values are age and scanner-adjusted Cox regression significance values for survival. The lower panels show similar results for the volumes

of physiological and metabolic lesions that were restricted to the voxels in the intersection of the T2ALL and the excitation volume

Table 2 Median and percentiles of values of nCBV from perfusion maps in different regions (N = 51 in the CEL, while N = 61 for the other

regions)

Parameter NAWM (N = 61) CEL (N = 51) NEL (N = 61) T2ALL (N = 61)

nCBV median 1.0 1.3 ± 0.8 1.0 ± 0.4 1.1 ± 0.4

nCBV 90th perc 1.8 ± 0.3 2.2 ± 1.4 2.0 ± 0.8 2.1 ± 1.0

nPH median 1.0 1.2 ± 0.7 0.9 ± 0.4 0.9 ± 0.4

nPH 90th perc 1.7 ± 0.3 1.9 ± 2.3 1.6 ± 0.8 1.8 ± 2.0

%REC median 83 ± 10.4 77 ± 13.5 81 ± 11.4 81 ± 11.8

%REC 10th perc 76 ± 10.5 62 ± 15.7 72 ± 12.4 69 ± 13.6

The median values in CEL and 90% were different from NAWM. The median values in the NEL were not different from NAWM but the 90%

has a P-value of 0.014 compared with NAWM. The results were similar for the peak height estimates. The only values that were significantly

different between data acquired on the 1.5T and 3T scanners were the recovery values in the CEL. None of these parameters were related to

survival based on the proportional hazards analysis

74 J Neurooncol (2009) 91:69–81

123



and lowest in the CEL region (0.54 and 0.20, respectively).

The CNI was increased in all lesion regions with the

highest median values in the overall population being in the

CEL region but the highest maximum and sum of CNI

value being within the voxels with CNI[2. The histograms

in Fig. 6c shows an example of a patient who had highly

elevated CNI in the NEL region.

The region of the lesion covered by the intersection of

T2ALL and the PRESS selected volume with CNI value

greater than 2 (termed the CNI2T) was evaluated as a

measure of tumor burden. In this case the number of voxels

in the CNI2T region had a median value of 15.9, which

means that it was larger than the CEL, but still relatively

small compared with the T2ALL. Large CNI2T volumes

were associated with poor survival (P = 0.005). To see

whether this could be attributed merely to a larger CEL

region, the survival analysis was repeated with the volume

of the CEL and the volume of the CEL ? NEC being

considered as co-variates. The hazard ratio remained sim-

ilar and the significance of the CNI2T volumes were

P = 0.021 and P = 0.009. Clearly the metabolic and

anatomic parameters provide information about different

aspects of the tumor. Figure 5 shows spectral data from in a

patient with what was classified as a GTR in the immediate

post-surgery scan and had very little contrast enhancement

in the pre-RT scan but had highly elevated choline and

decreased NAA in the NEL.

It should be noted that there were voxels outside the

T2ALL with CNI greater than 2 for many patients (the

median total number of voxels with CNI [2 was 30.6

compared with a median number in the CNI2T region of

15.9). From examination of the data it was observed that

many of these voxels had relatively normal levels of cho-

line but substantially decreased NAA. The P-value for the

proportional hazards analysis for the total number of voxels

with CNI [2 was 0.059 compared with the P-value of

0.005 for those that were within the T2ALL.

Table 5 shows the lactate and lipid levels, which were

normalized to the median value of NAA within NAWM in

order to facilitate comparisons between patients. In the

overall patient population it was observed that although the

combined lactate and lipid resonances (nLL) were

increased in all lesion regions, they tended to have higher

median intensity in the CEL region compared to NAWM

(0.23 vs. 0.07). There were however, voxels with high nLL

outside the CEL, as indicated by the maximum and the sum

of these values, which were highest in the region with

voxels having CNI[2. The median number of voxels with

elevated nLL was significantly larger for the patients

whose data were acquired on a 3T scanner, presumably

because the SNR was larger for these patients (median of

18 voxels versus nine voxels for data from 1.5T). When

controlling for age and scanner type the proportional haz-

ards analysis indicated that the number of voxels with

elevated nLL had a P-value of 0.009. Although the vol-

umes were larger, the magnitude of the median, maximum

and sum of the nLL values were significantly lower at 3T

compared to 1.5T for all regions except for the CEL.

Table 5 shows that, when controlling for scanner and age,

parameters describing of the intensities of nLL in voxels in

the T2ALL and CNI2 were also associated with survival,

with the P-values for sum of nLL values in T2ALL and

CNI2 being the smallest (0.001 and 0.006, respectively).

Table 3 Median and 10th percentile values of ADC and normalized

ADC in different regions

Parameter WM CEL NEL T2ALL

ADC median 811 ± 38 1175 ± 301 1089 ± 241 1093 ± 237

ADC 10th

percentile

696 ± 63 876 ± 199 838 ± 201 838 ± 199

nADC median 1.0 1.4 ± 0.4 1.3 ± 0.3 1.4 ± 0.3

nADC 10th

percentile

0.9 ± 0.1 1.1 ± 0.3 1.0 ± 0.3 1.0 ± 0.3

The values in all of these regions were significantly different from the

values in NAWM but not between themselves

Table 4 Median, maximum values and summed values of the spectroscopic metabolite maps in different regions

Parameter WM (N = 67) CEL (N = 49) NEL (N = 67) T2ALL (N = 67) CNI2T (N = 67) CNI2 (N = 67)

nCho median 1.00 0.79 ± 1.04 0.97 ± 0.86 0.90 ± 0.50 1.18 ± 0.49 1.22 ± 0.33

nCho max 1.53 ± 0.54 0.84 ± 1.20 1.38 ± 1.23 1.50 ± 1.21 1.56 ± 1.21 1.81 ± 2.38

nCr median 1.00 0.54 ± 0.52 0.76 ± 0.37 0.70 ± 0.36 0.75 ± 0.29 0.87 ± 0.25

nNAA median 1.00 0.20 ± 0.18 0.41 ± 0.21 0.34 ± 0.18 0.36 ± 0.17 0.49 ± 0.18

CNI median -0.01 ± 0.41 3.23 ± 4.35 2.78 ± 4.68 2.35 ± 3.57 3.45 ± 1.88 2.77 ± 0.81

CNI max 2.56 ± 3.08 3.43 ± 4.68 4.29 ± 5.67 5.05 ± 5.56 5.79 ± 5.55 5.77 ± 6.03

CNI sum 3.24 ± 20.12 3.42 ± 21.20 15.31 ± 48.19 50.5 ± 94.10 41.59 ± 95.62 78.60 ± 110.50

There was no significant difference between the values at 15T and 3T field strengths. None of these parameters exhibited a significant

relationship to survival
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Fig. 5 T1 post contrast and FLAIR images from a 49 year old patient

with a newly diagnosed GBM whose lesion was classified as a gross

total resection at the time of surgery. Four weeks later and

immediately prior to treatment with radiation small regions of

Gadolinium enhancement can be observed in the medial edge of the

lesion and a more extensive area of hyperintensity on FLAIR images.

The MRSI data show that this abnormality has highly elevated CNI

with the blue shading showing voxels in the axial and coronal planes

that have abnormal CNI which ranges from 3.2 to 30.7. Note that the

level of choline is so high in tumor relative to normal voxels that the

intensity scale has to be reduced by a factor of 4 to be able to visualize

them within the same array

Table 5 Median, maximum and sum of nLL = (lactate ? lipid)/NAA (n = 67) and P-values for the proportional hazards analysis with age and

scanner field strength being considered as covariates

Parameter NAWM CEL NEL T2ALL CNI2T CNI2

nLL median 0.07 ± 0.08 0.23 ± 0.22 0.12 ± 0.12 0.15 ± 0.18 0.16 ± 0.08 0.11 ± 0.13

P = 0.015 P = 0.027

nLL max 0.21 ± 0.30 0.29 ± 0.38 0.25 ± 0.29 0.34 ± 0.71 0.32 ± 0.71 0.32 ± 0.73

P = 0.043 P = 0.022

nLL sum 2.00 ± 2.92 0.29 ± 2.02 1.03 ± 2.39 1.62 ± 9.22 1.61 ± 10.37 3.27 ± 11.96

P = 0.001 P = 0.010 P = 0.006

nLac median 0.07 ± 0.06 0.21 ± 0.20 0.16 ± 0.11 0.17 ± 0.07 0.19 ± 0.07 0.13 ± 0.06

P = 0.030

nLac max 0.20 ± 0.16 0.21 ± 0.34 0.24 ± 0.18 0.29 ± 0.17 0.30 ± 0.15 0.29 ± 0.18

P = 0.002 P = 0.008 P = 0.0005

nLac sum 2.80 ± 1.68 0.20 ± 1.80 0.91 ± 2.18 2.05 ± 4.06 2.28 ± 4.57 3.07 ± 4.72

P = 0.021 P = 0.032 P = 0.011

nLip median 0.02 ± 0.07 0.24 ± 0.32 0.06 ± 0.09 0.11 ± 0.08 0.12 ± 0.11 0.05 ± 0.09

nLip max 0.19 ± 0.38 0.24 ± 0.32 0.21 ± 0.28 0.31 ± 0.36 0.31 ± 0.34 0.25 ± 0.32

nLip sum 1.23 ± 1.88 0.24 ± 2.29 0.37 ± 1.88 2.02 ± 4.95 1.23 ± 4.02 1.35 ± 4.13

Significance levels are shown only for the cases where P \ 0.05. Data acquired using a 1.5T scanner used a lactate edited sequence (n = 35) and

the values of nLac (Lactate/nNAA) and nLip (Lipid/nNAA) were also available
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For the 35 patients who were scanned with lactate edited

MRSI it was possible to examine the effects of lactate and

lipid separately. An example of lactate edited MRSI

spectra is shown in Fig. 3. This demonstrates that there

were some voxels within the CEL that have CNI[2 but no

lactate and lipid, while other voxels have both CNI[2 and

elevated lactate and lipid. The histograms of lactate

intensities in Fig. 6d from another of the patients in the

study show that there were also voxels with elevated lactate

in both the CEL and NEL. The summary values in Table 5

indicate that there were voxels with elevated Lac in all of

the regions considered, but that lipid values were more

likely to be focused in the CEL. Although none of the lipid

parameters were associated with survival, the maximum

values of lactate in the T2ALL, CNI2T and CNI2 regions

had P-values from the proportional hazards analysis of

0.002, 0.008 and 0.0005, respectively. The corresponding

summed lactate values were also significant but had larger

P-values (0.021, 0.032 and 0.011).

Discussion

The survival for patients with glioma depends on both the

underlying malignancy of the tumor and its ability to

respond to treatment. Since both of these are intrinsic

properties of tumor cells, the goal of the present study was

to examine if there is a relationship between the post-

surgery, pre treatment MR parameters and survival. The

most notable finding was that all of the post-surgery,

pre-radiation measures of the tumor volume including

anatomic, perfusion, diffusion and metabolic parameters

were associated with survival. Although previous studies

have indicated that the extent of surgical resection may be

an important factor in predicting survival for gliomas

[18, 21, 22, 24, 25] this is the first time that data from

pre-treatment scans have been analyzed for both the

conventional and the more advanced MR imaging modal-

ities. In the following we discuss the implications of these

findings in terms of how perfusion, diffusion and spectro-

scopic data can be interpreted in the context of anatomic

images.

Anatomic measures of tumor burden

The fact that the volume of the T2 hyperintensity had the

strongest relationship with survival and that this remained

highly significant when controlling for the volumes of the

Gadolinium enhancing and necrotic lesions, suggests that it

was the most reliable anatomic measure of tumor burden

for this population. These findings are in marked contrast to

those from a related study performed in our laboratory for

Fig. 6 Distribution of rCBV,

ADC, CNI and Lac/nNAA

values in normal appearing

white matter (NAWM—green

curves), contrast enhancement

lesion (CEL—dark blue curves)

and non-enhancing lesion

(NEL—light blue curves)

regions for the patient who was

shown in Fig. 1
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patients who were scanned prior to their initial surgery

[11]. That study found none of the pre-surgery anatomic

lesion volumes to be associated with survival. One expla-

nation of the differences between the results at these two

time points is the variability in the extent of resection

caused by the location of the tumor, which could mean that

there is no clear relationship between pre- and post-surgery

volumes. A second explanation is that the volume of T2

hyperintensity in the pre-surgery scan is an unreliable

measure of tumor burden because it includes substantial

contributions from edema. In either case, this study is

indicating that removal of portions of the tumor and the

associated reduction in mass effect results in the residual

volumes of T2 hyperintensity becoming the most accurate

measure of tumor burden.

Measures of tumor cellularity/proliferation

from the MRSI data

A further implication of the high level of significance for

the volume of the T2 hyperintensity is that the non-

enhancing portion of the tumor has an impact upon survival

and should therefore play a prominent role in evaluating

prognosis and directing therapy. Interestingly the number

of voxels with elevated CNI that were within the T2

hyperintensity include substantial portions that were non-

enhancing and showed a significant relationship to sur-

vival. This implies that the CNI lesion, which reflects a

combination of tumor cellularity and increased prolifera-

tion, may be a more reliable measure of tumor burden than

the Gadolinium enhancing lesion and may be important for

distinguishing tumor from edema.

This finding is consistent with our previous studies [28,

40, 43, 44], which showed that the regions with the highest

CNI were frequently outside the enhancing tumor volume

and that there were substantial differences between the

spatial extent of morphologic and metabolic lesions. Note

that high CNI values reflect both increased choline due to

high cell density or proliferative capacity and loss of NAA

[33, 34, 54]. The presence of voxels outside of the T2

hyperintensity with normal choline and decreased NAA

may be due to infiltrative tumor or to impairment of neu-

ronal function in regions close to the site of resection. This

may explain the stronger association with survival for the

number of voxels with elevated CNI within the T2

hyperintensity compared with the total number of voxels

with elevated CNI. Future studies should acquire 1H MRSI

data at a field strength of 3T to improve the signal to noise

ratio of the data [29] and should examine the patterns of

tumor progression for patients who have abnormal voxels

outside the T2 hyperintensity in order to determine whether

the NAA intensities in these voxels recover with time or

whether these regions show evidence of tumor growth.

Measures of tumor burden from DWI data

The existence of large regions with ADC values within the

T2 region that were less than 1.5 times normal appearing

white matter was observed to be associated with poor

survival at pre-surgery [11] and pre-radiation time points.

The latter is consistent with previous results from our

laboratory in a smaller population of patients [40] and with

observations that have linked low ADC with high tumor

cellularity [14, 23, 51, 52]. Of interest is that despite the

significance of the volumes of lower ADC, there was

no relationship between the intensities of ADC in the

Gadolinium enhancing volume as had been the case for the

data from our pre-surgery population. This may be due to

ambiguities in ADC intensity that are induced by post-

surgery ischemia in regions close to the surgical cavity and

which have been shown to lead to subsequent regions of

Gadolinium enhancement that turn into cystic encephalo-

malacia in a period of 2–6 months after surgery [47].

Despite this effect, our study implies that the pre-radiation

ADC maps may be valuable for assessing the spatial extent

of the region of tumor, which is important for defining the

target for focal therapy and customizing treatment plan-

ning. Other recent reports have indicated that early changes

in ADC have a strong potential as an early biomarker for

treatment response [9, 15].

Measures of tumor burden from PWI data

The presence of regions with increased and abnormal blood

vessels is an important characteristic for distinguishing

high grade from low grade glioma [6], and is therefore

expected to be associated with poor survival. The rela-

tionship of the volume of the region within the T2

hyperintensity with CBV greater than three times normal

appearing white matter to survival in our post-surgery pre-

radiation population is therefore not surprising. It should be

noted, however, that the regions with high CBV and high

DR2* peak height were relatively small and were located

mainly within areas of residual Gadolinium enhancement.

The findings in this study are thus consistent with

the surgery removing not only a substantial part of

the enhancing lesion, but also the major component of the

region with abnormal vascular parameters. While the areas

with abnormal vascularity are likely to grow larger as the

tumor progresses, none of the intensities of the perfusion

parameters within the pre-radiation abnormalities were

predictive of survival. The comparison of 1.5T and 3T data

showed similar qualitative results for the two datasets but

gave improved sensitivity for several of the resulting MR

parameters [31]. This suggests that 3T should be the field

strength used for future studies on patients with brain

tumors. The increased sensitivity of the 3T data to vessel
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permeability as reflected by differences in DR2* recovery

between the two field strengths suggest that future studies

wishing to measure this parameter would benefit from

being performed at the higher field strength.

1H MRSI parameters reflecting malignant behavior

In this study, the number of voxels in the T2 hyperintensity

and regions with CNI greater than 2 that had elevated

combined levels of lactate and lipid values were also

related to poor survival. From the analysis of the lactate

edited data it appears that lactate was the key factor con-

tributing to this poor outcome. Increased lactate may occur

when the anaerobic glycolic pathway exceeds the capacity

of the lactate catabolizing respiratory pathways or when the

cellular capacity for exporting lactate to the blood stream is

impaired [45, 56]. This would indicate tumor metabolism,

infiltration and growth. Another possibility is that the lac-

tate peaks are indicators of hypoxia, which has been shown

to be a factor in poor response to the treatment of radio or

chemotherapy [1]. Underlying mechanisms include the

presence of oxygen which is required for fixation of radi-

ation induced damage in DNA, the involvement of hypoxia

driving genetic instability and resulting in tumor progres-

sion [50]. Previous studies have supported the role of

lactate and lipid in defining malignant behavior [2, 28].

Conclusion

This study has examined the value of pre-XRT in vivo MR

parameters in predicting survival for patients with GBM.

Anatomic, physiological and metabolic measures of

residual tumor volume were strongly related with survival.

Of particular interest is that several of these parameters

were different from the factors that were prognostic prior to

surgical resection. Factors highlighted in this pre-radiation

scan were the contribution of the non-enhancing portion of

the T2 hyperintenisty, as well as the role of DWI and 1H

MRSI in defining tumor within these regions. While our

current study was limited by having incomplete coverage

of the T2 lesion for some of the MRSI and PWI datasets,

future advances in data acquisition methods are expected to

significantly improved coverage and allow these variables

to be used for planning focal therapy. The comparison of

1.5T and 3T data showed similar qualitative results for the

two datasets but gave improved sensitivity for several of

the resulting MR parameters. This suggests that 3T should

be the field strength used for future studies on patients with

brain tumors. Other key parameters in predicting outcome

were the spatial extent and intensities of the combined

lactate and lipid peaks. Results obtained from the lactate-

edited 1H MRSI data suggested it is the lactate within

non-enhancing tumor that is more relevant in predicting

survival than residual lipid. Future studies should investi-

gate the parameters that have been identified in larger

populations of patients and see whether they can also be

used to assess prognosis at other time points. These results

will assist oncologists to interpret the results of MR

imaging examinations in order to stratify patients for

clinical trials and tailor treatment to each individual tumor.
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